Overview/Description
The core of Hadoop consists of a storage part, HDFS, and a processing part, MapReduce. Hadoop splits files into large blocks and distributes the blocks amongst the nodes in the cluster. To process the data, Hadoop and MapReduce transfer code to nodes that have the required data, which the nodes then process in parallel. This approach takes advantage of data locality to allow the data to be processed faster and more efficiently via distributed processing than by using a more conventional supercomputer architecture that relies on a parallel file system where computation and data are connected via high-speed networking. In this course, you'll learn about the theory of YARN as a parallel processing framework for Hadoop. You'll also learn about the theory of MapReduce as the backbone of parallel processing jobs. Finally, this course demonstrates MapReduce in action by explaining the pertinent classes and then walk through a MapReduce program step by step. This learning path can be used as part of the preparation for the Cloudera Certified Administrator for Apache Hadoop (CCA-500) exam.
Target Audience
Technical personnel with a background in Linux, SQL, and programming who intend to join a Hadoop Engineering team in roles such as Hadoop developer, data architect, or data engineer or roles related to technical project management, cluster operations, or data analysis